海洋测绘
概念
海洋测量的主要对象是海洋。同陆地测量相比,海洋测量在基本理论、技术方法和测量仪器设备等方面具有许多独自的特点。
第一,测量工作的实时性。海洋测量的工作环境一般在起伏不平的海上,大多为动态测量,无法重复观测,精密测量施测难度较大,无法达到陆地测量的精度水平。
第二,海底地形地貌的不可视性。测量人员不能通过肉眼观测到海底,海底探测一般采用超声波等仪器进行探测,无法达到陆地测量的完整性。
第三,测量基准的变化性。海洋测量采用的深度基准面具有区域性,无法像陆地测量那样在全国范围内实现统一。
第四,测量内容的综合性。海洋测量工作需要同时完成多种观测项目,需要多种仪器设备配合施测,与陆地测量相比,具有综合性的特点。
任务
海洋测绘通过对海面水体和海底进行全方位、多要素的综合测量,获取包括大气(气温、风、雨、云、雾等)、水文(海水温度、盐度、密度、潮汐、波浪、海流等)以及海底地形、地貌、底质、重力、磁力等各种信息和数据,并绘制成不同目的和用途的专题图件,为航海、国防建设、海洋开发和海洋研究服务。根据海洋测绘的目的,可把海洋测绘任务划分为科学性任务和实用性任务两大类。
分类
海洋测绘属于测绘学中的二级学科,包括海洋大地测量、海洋重力测量、海洋磁力测量、海洋跃层测量、海洋声速测量、海道测量、海底地形测量、海图制图、海洋工程测量等。
海洋测绘是由海道测量开始的,现在已逐步发展到海洋大地测量、海底地形测量和许多海洋专题测量。海道测量在所有海洋测量工作中占有重要地位,是为保证船舶航行安全为目的而对海洋水体和水下地形进行的测量和调查工作,有些国家还把它和江河湖泊的测量统称为水道测量或航道测量。测量获得的水区各种资料,可用于编制航海图等。根据测量内容,海道测量包括控制测量、岸线地形测量、水深测量、扫海测量、海洋底质探测、海洋水文观测、助航标志的测定以及海区资料调查等。根据测区距海岸的远近、水下地形的复杂状况和制图的要求,海道测量通常又可分港湾测量、沿岸测量、近海测量和远海测量等四类。
基准
海洋测绘基准是指测量数据所依靠的基本框架,包括起始数据、起算面的时空位置及相关参量,包括大地(测量)基准、高程基准、深度基准和重力基准等。海洋测绘根据测绘目的不同,平面控制也可采用不同的基准。海道测量的平面基准通常采用2000国家大地坐标系(cgcs2000),投影通常采用高斯一克吕格投影和墨卡托投影两种投影方式。
我国的垂直基准分为陆地高程基准和深度基准两部分。陆地高程基准采用“1985国家高程基准”,对于远离大陆的岛礁,其高程基准可采用当地平均海面。深度基准采用理论最低潮面。
方法
定位
海洋定位是海洋测绘和海洋工程的基础。海洋定位主要有天文定位、光学定位、无线电定位、卫星定位和水声定位等手段。
1.天文和光学定位:光学定位是借助关学仪器,如经纬仪、六分仪、全站仪等实施海上定位,主要有前方交会法、后方交会法、侧方交会法和极坐标法等。
2.无线电定位:无线电定位多采用圆一圆定位或双曲线定位方式。
3.卫星定位:卫星定位属于空基无线电定位方式,为目前海上定位的主要手段。卫星定位系统主要包括美国的gps,俄罗斯的格洛纳斯(glonass)、我国的北斗定位系统以及欧洲的伽利略(galileo)定位系统。
4.水声定位
测深
海洋测深的方法和手段主要有测深杆、测深锤(水铊)、回声测深仪、多波束测深系统、机载激光测深等。
1.测深杆:主要用于水深浅于5m的水域测深。它由木制或竹质材料支撑,直径为3~5 cm,长约3~5 m,底部设有直径5~8 cm的铁制圆盘。
2.测深锤(水铊):主要适用于8~10 m水深且流速不大的水域测深。它由铅砣和砣绳组成,其重量视流速而定,砣绳一般为10~20 m,以10 cm为间隔。
3.回声测深仪;
4.机载激光测深系统。